
Development of an Autonomous,
Tethered and Submersible Data

Buoy

Final year project
GH7P - Artificial Intelligence and Robotics

Author:
Tom Blanchard
ttb7@aber.ac.uk

Supervisor:
Dr. Mark Neal
mjn@aber.ac.uk

Contents

Acknowledgements iv

Abstract v

1 Introduction 1
1.1 Current CTD Deployment Methods 2

2 Background 4
2.1 Argo Float Network . 4
2.2 Gliders . 6

2.2.1 Slocum Glider . 6
2.3 Data Buoys . 7

2.3.1 Drifting Data Buoys 7
2.3.2 Tethered Data Buoys 7

2.4 Water Quality Sensors . 8
2.5 Satellite Communications . 9

2.5.1 Iridium . 9
2.6 Buoyancy Control . 10
2.7 Sonar . 10

3 Requirements 12
3.1 Objectives . 12
3.2 Requirements . 12
3.3 Desirable, non-essential Features 13

4 Methods and Tools 15
4.1 Methodology . 15
4.2 Development Tools . 16

4.2.1 Programming Language and IDE 16
4.2.2 Programming Hardware and Debugging 18

5 Design 19
5.1 Electronic Hardware . 19

5.1.1 PIC Microcontroller 20
5.1.2 Satellite Communications Modem 20
5.1.3 Water Sampling Hardware 21

Tom Blanchard i

5.1.4 Storage . 22
5.1.5 Buoyancy Control . 24
5.1.6 Sonar . 25
5.1.7 Real-Time Clock . 26
5.1.8 Power Consumption and Control 26

5.2 Software . 29
5.2.1 State Diagram . 29
5.2.2 Fault Handling . 32
5.2.3 User Interaction . 33
5.2.4 Files . 33

5.3 Mechanical Hardware . 33
5.3.1 Body Design . 33
5.3.2 Actuator Design . 35
5.3.3 Tether . 35

6 Implementation 37
6.1 Iteration 1 - Sonar and PIC 37
6.2 Iteration 2 - Sonde . 38
6.3 Iteration 3 - SD Card . 39
6.4 Iteration 4 - Real-Time Clock 39
6.5 Iteration 5 - States & Iridium Satellite Modem 41
6.6 Iteration 6 - Power Electronics and Actuator 41
6.7 Iteration 7 - Body Construction 43
6.8 Remaining Issues or Known Bugs 44

7 Testing 45
7.1 Hardware Tests . 45
7.2 In-lab System Tests . 46
7.3 Field Tests . 46

7.3.1 Location and Test Procedure 46
7.3.2 Results . 48
7.3.3 Acceptance Tests . 51

8 Evaluation 53
8.1 Evaluation of the Final System 53
8.2 Personal Evaluation . 54

Bibliography 55

Appendices 61

A Hardware On/Off State Guide 61

B Battery Technologies 62

Tom Blanchard ii

C Plotted Sonde Data 63
C.1 Pre/Post Sonde Depth Problem 63
C.2 Coductivity Data . 64
C.3 Chlorophyll and Oxygen Data 64
C.4 Temperature Data . 65

D Buoyancy Control Graphs 66
D.1 Actuator Force Graph . 66
D.2 Air Tank Duration Graph . 67

E Maps 68
E.1 Nant-y-Moch . 68
E.2 Ystumtuen . 69

F Equipment Cost 70

G Example Data 71
G.1 DATAFILE.TXT . 71
G.2 M0.TXT . 71
G.3 Debug Output . 72

Tom Blanchard iii

Acknowledgements

I would like to thank my supervisor Dr Mark Neal who has been of immense
help throughout the project. I am especially grateful for the time he has
spent helping me test my project at various times this year. I would also like
to thank Colin Sauzé and Michael Clarke both of whom were great sources
of information, tips and general technical knowledge. Ian Izet has been a
constant source of advice and help on all things electrical and mechanical,
his knowledge has saved me a lot of time and hassle over the last year.
Dr Alun Hubbard, Dr Jason Box and Dr Richard Bates have all been very
patient in explaining what it is they wanted from the project, their advice
and knowledge has been of immense help.

I would also like to thank all of the other final year students, especially
Alex Kruzewski, who have spent far too much time in the DSL over the
last few months. They have all helped make the countless hours spent in
there a lot more enjoyable. Lastly I would like to thank my parents for their
continual support throughout my degree.

Tom Blanchard iv

Abstract

The structure and dynamics of glaciers is a very active research topic in
geophysics. Scientists are currently working on understanding the processes
that control glaciers and their effect on the environment. Existing techniques
used to acquire water quality data near glaciers are considered too dangerous
or return a limited amount of useful data. In this project the author sets out
to create an autonomous tethered data buoy that can take the measurements
desired by glaciologists, at multiple depths, for long periods of time. The
system is designed to be as simple as possible without compromising data
quality.

Tom Blanchard v

1 Introduction

The problem of studying glaciers has always been a complicated one. The
glacier itself can move several meters a day and the underlying processes
that control the glacier’s movements are not yet fully understood. Of the
many complex processes, the one stands out as perhaps the most interesting
and complex, is the calving of glaciers. Calving1 is the geoscientific name
for the creation of icebergs from a glacier and it occurs on the leading edge
that intersects a body of water2. Calving events can vary from a few small
boulder sized pieces of ice being cast off, to pieces the size of cities[19]. Even
small calving events can be very dangerous. This is part of the process that
causes glaciers to advance or retreat. A year with many large calving events
will cause the glacier to “retreat”, a year with only small or few calving
events will cause it to “advance” due to the natural forward movement of
the glacier. The current theory is that the rapid draining of melt-water
lakes, situated on the glacier itself, can cause a significant amount of stress
to be exerted upon the glacier, which in turn causes calving events. These
lakes often drain through existing englacial streams3 which get significantly
larger in the draining process leading to weak points in the glacier. One way
to examine this theory is to study the draining lakes themselves, another is
to study the water along the leading edge of the glacier. It is thought that
by looking at various water quality measurements at the calving front it can
be determined when a lake has drained. The author will be focusing on
trying to collect this data by designing, building and testing an autonomous
tethered and submersible data buoy.

There are currently several different methods of taking water quality
measurements at the calving front of a glacier, each of which provides data
which helps scientists better understand the calving process. By far the
most commonly used instrument is something called a CTD, which stands
for Conductivity, Temperature and Depth. This is a waterproof sensor pack-
age containing sensors for measuring, as the name suggests, conductivity,
temperature and depth4 that is turned on and lowered to the desired depth
to take measurements.

1Also known as iceberg calving.
2Usually fjords, lakes or the sea.
3Streams that flow through and under the glacier.
4Modern CTDs often have other sensors fitted to allow them to measure things like

dissolved O2 and Chlorophyll content.

Tom Blanchard 1

Figure 1.1: Lille glacier in Greenland is one of the glaciers being studied by
glaciologists and is a possible deployment location for the system described
in this project.

1.1 Current CTD Deployment Methods

There are several ways of deploying a CTD, one is to take a boat to the
desired location, manoeuvre it into position and lower the CTD down to
the required depth before pulling it back onto the boat. This requires long
cables (often several hundred meters) and an on-board winch. Getting close
enough to the glacier to take useful measurements is often very dangerous,
calving events are currently impossible to predict and can occur very quickly.
The chances of surviving a medium to large event even if only 100m away
are slim. On top of this, data can only be collected while there is someone
present to do so and renting or running a boat for long periods of time can
be very expensive.

The second method is to attach the CTD to a tethered buoy and leave
it sampling, this is an approach often used in other parts of the world.
Providing that the buoy can relay this data (using Satellite, GSM networks
or an Acoustic Modem) it is possible to get real-time data without a person
being present. These buoys can be designed to run for several years and
so have a high longevity. The downside is that being on the surface of the
water, near a calving glacier, is as dangerous a place to be for a buoy as for
a human. There is a possibility that the glacier could calve directly onto the
buoy, most likely destroying it completely and during the winter the surface
of the sea freezes solid which would crush the buoy.

The last method is to fit the CTD to an autonomous craft, like an
underwater glider which holds station at the leading edge of the glacier,
taking measurements and ascending to transmit data. Whilst this allows for

Tom Blanchard 2

surveying multiple locations along the leading edge (which is very useful)
gliders are notoriously difficult to control and usually do not have sufficient
power to last more than a few months at best.

Ideally, Glaciologists would like a device that could take measurements
along the leading edge of a glacier at a variety of depths for long periods
of time and transmit that data back in real time. Being slightly more real-
istic, several static devices could be deployed along the front of the glacier
to perform these measurements. There already exists a type of submersible
buoy called an Argo float which can submerge to take measurements. How-
ever, the buoys cost around $15,000 and once running costs are factored in
this figure almost doubles. They are also not designed to be deployed in an
environment containing large amounts of ice. This project aims to make an
autonomous submersible data buoy that is relatively similar in cost, simple
and inexpensive to run. It will be tethered5 in position and will control its
buoyancy to ascend and descend to certain depths to take measurements
with a CTD. It will also attempt to transmit the data it has recorded in
as near to real-time as possible, which it will do by periodically rising to
the surface. It will be important to check if the surface is actually clear
of debris before surfacing. The buoy is intended to be deployed in front of
glaciers where there will be icebergs, brash ice and solid ice in the winter
which could damage the buoy should it attempt to surface. During winter
it is expected that the buoy will not surface, and therefore not transmit any
data, for 4 to 6 months.

5To keep it in one position.

Tom Blanchard 3

2 Background

2.1 Argo Float Network

The Argo Float network is a global array of free drifting floats. Deployment
started in 2000 and by 2007 had fully been completed, with over 3000 floats
deployed (see fig 2.1)[16]. The floats measure temperature, salinity and
depth as well as the velocity of the upper ocean currents and relay the data
back through the Systéme Argos location and data transmission system.
The data, some 100,000 profiles a year, is then made publicly available. The

Figure 2.1: The Argo network as of September 2009, now comprised of
around 3200 floats from many different countries. Also worth noting is how
few floats there are near either polar region.

floats have two different profiling modes; ‘simple’ and ‘park and profile’. In
the simple mode the float descends to 2000m, where it then starts sampling
the water. It stays at this depth for approximately 9 days before starting to
ascend slowly over the course of 6hrs to the surface. Once at the surface it
transmits the data it has collected and submerges again. When configured
for the park and profile mode, the float descends to a recommended depth of
1000m where it ’cruises’ for approximately 9 days. It then descends further

Tom Blanchard 4

Figure 2.2: A cross-section of an Argo Float.

to 2000m where it starts to record data and slowly rise over the course of
6hrs to the surface to transmit the data. Of the 3000 floats in service 70%
sample from depths greater than 1500m and a further 20% between 1000m
and 1500m. Deployment is currently still ongoing in an effort to achieve
global ocean coverage.

The floats themselves are battery powered, autonomous, are neutrally
buoyant at their ’cruising’ depth and have expected lifetimes of 3-4 years. A
cross-sectional diagram is shown in fig 2.2. They are also unguided, drifting
with the ocean currents. These drifting patterns are considered useful data
as the float’s position (accurate to 100m) can be tracked by the Argo Net-
work’s satellite based tracking and communication system. For an accurate
position information and error free transmission of data the floats need to
spend 6-12hrs on the surface. Buoyancy control is achieved by pumping hy-
draulic fluid into, or out of, an external bladder to change the floats volume
thus creating a change in buoyancy.[10]

Tom Blanchard 5

Figure 2.3: The Slocam glider during a test in the Sargasso Sea, the “wings”
can be seen in a neutral position keeping the glider surfaced and level.(Image
courtesy of Rutgers)

2.2 Gliders

Gliders, in this field, are a kind of autonomous submersible that ’glide’ un-
derwater. Their method of propulsion comes from changing their buoyancy
and are designed so that when ascending or descending some of the verti-
cal motion is converted into forwards motion which is accomplished using
small wings. This results in a slow but very low power movement forward,
which while slower than conventional AUVs (autonomous underwater ve-
hicle) offers much better range and mission duration, often extending into
months and thousands of kilometres of range. They typically operate at
depths of around 1000m-2000m, rise over the course of several hours and
can travel significant distances horizontally in the process. Like the Argo
Floats they sample things like depth, temperature and conductivity (which
allows salinity to be calculated) and when surfaced they transmit their data
via satellite. One benefit of using a glider over a float is that they can be
guided to target locations. This coupled with satellite connectivity and their
ability to go to specific locations, means that their mission can be changed
without having to recover them.

2.2.1 Slocum Glider

The Slocum glider1 was first fabricated and tested in January 1991 and
this initial development showed that such a device was viable. Initially the
change in buoyancy was achieved by electromagnet released weights and

1Named after the American sailor Joshua Slocum, the first to sail around the world
single-handedly.

Tom Blanchard 6

later by using a hydraulic pump to inflate an external bladder in the tail
section. The goal was to exploit the temperature difference between the
upper and lower layers of the ocean to create a thermocline-driven buoy-
ancy engine. Some of the outcomes of the testing were that glide speeds
of 0.28m/sec horizontally were achievable. This was the figure originally
deemed necessary for the glider to be able to meaningfully station-keep.
The increases to this speed were mainly due to reduced drag and increased
drive force (buoyancy change). Another outcome was the knowledge that to
maximize the glider’s horizontal velocity, the ideal dive angle and a constant
drive force over the course of the dive had to be maintained. This meant
that passive buoyancy compensators would be needed to match the glid-
ers density variation to that of the ocean over the 1800m operating range.
They also concluded that suitable control over the glider had been achieved
in terms of holding headings and turning in a tight circle.

The controlling factors for long-term success were considered to be low
power two-way satellite communications and the thermocline-driven buoy-
ancy change engine. Gliders are now used widely and in fact 480 Slocum
gliders occupy, on a monthly basis, the 48 hydro-graphic sections that took
the World Hydrographic Program 12 years to survey just once using a ship.
They surface around six times a day to report to Mission Control and trans-
mit data via satellite.[5]

2.3 Data Buoys

Data Buoys can generally be divided into two separate categories, tethered
and untethered. They are usually used for sea-state and weather monitoring
and record data such as air temperature, water temperature, wave height,
wave period, air pressure, wind speed and wind direction.

2.3.1 Drifting Data Buoys

These survive for about 18 months and use some form of drogue2 to prevent
them from moving out of the current they are monitoring. They are also
quite cheap which is important because of their relatively short lifespans
and are often used in the Lagrangian analysis of ocean currents3.[1]

2.3.2 Tethered Data Buoys

Often serving National Forecasting needs these buoys are usually large, some
up to 12m across, and expensive. Some of these record more data than they
transmit, in order to lower costs, meaning that periodic retrieval of the
data is needed. This means that most of the large buoys are also regularly

2A parachute-like sea anchor often suspended at a specific depth to keep the buoy in a
particular ocean current.

3Lagrangian analysis is where the individual parcels of fluid are tracked in space and
time to give an understanding of flow field

Tom Blanchard 7

Figure 2.4: A medium sized weather buoy deployed by the National Oceanic
and Atmospheric Administration(NOAA).

maintained, serviced and upgraded. Live data is used in research work
and forecasting, non-live data is processed and analysed to provide more
accurate historical records. They are tethered at many different depths,
from relatively shallow waters to depths of 6000m. Due to their static nature
vandalism and theft is an issue especially when they are tethered in close
proximity to fishing grounds, where their tethers may get caught in nets.

2.4 Water Quality Sensors

Most of the systems described above contain complex water quality sen-
sors called Sondes4 or CTDs5, for measuring parameters such as depth,
temperature, turbidity, conductivity, salinity, pH levels, concentrations of
nitrogen/oxygen and many more. Many of the systems described above
use pre-made units, as developing and engineering these sensors to work at
depths of several thousand meters is expensive and complex. These vary in
capability from very small and portable pieces of equipment that measure
only a few parameters to larger systems, measuring 10’s of parameters and

4Which means sensor/probe in several European languages.
5Conductivity, Temperature, Depth.

Tom Blanchard 8

rated for depths of over 6000m. Nearly all contain a basic control system
and batteries allowing them to log selected parameters to internal memory
for a small period of time or to output NMEA6 formatted strings usually
over a serial connection. Due to the extremely high pressures that they are
subjected to, the vast majority of the sensors are optical as there are few
other technologies capable of withstanding such pressures for long periods
of time. This means that calibration is vital and that there is potential for
fouling of the sensors due accumulated dirt or debris.

2.5 Satellite Communications

There are many different companies offering satellite communication ser-
vices, some have their own satellite networks and some resell services from
other providers. Different companies provide different hardware and soft-
ware to make use of their services which often differ in reliability, perfor-
mance and coverage. The author has focused on Iridium due to the depart-
ment’s experience with them, although research into other companies and
services was undertaken it is not presented here.

2.5.1 Iridium

Iridium owns one of the largest satellite constellations currently in orbit
around earth, consisting of 66 cross-linked satellites in a LEO (Low Earth
Orbit) of 780km above the Earth. They also operate 7 in-orbit spares. The
constellation is made up of six orbital planes, each made up of 11 satellites,
that intersect over the poles. The satellites travel at around 17, 000mph,
complete an orbit in 100min and take approximately 8 minutes to travel
from horizon to horizon. Each satellite projects 48 spot beams toward Earth,
each beam covers an area with a diameter of 250 miles and in total one
satellite covers an area with a diameter of 2800 miles (spot beams overlap).
This allows Iridium to provide truly global coverage. Calls and data are
relayed through the constellation then downlinked to an Iridium Gateway
on the ground where it is patched into the PSTN (Public Switched Telephone
Network).

The constellation and infrastructure design means that satellite outages
will be localised to a particular region and that inter-satellite links can be
routed around the damaged satellite. The in-orbit spares also mean that a
damaged satellite can be replaced quickly and backup “Earth Terminals”
provide redundancy for the downlink element of the system. Iridium also
sell a service called SBD (Short Burst Data), a text message like system
that allows the transmission of 340 byte messages and receipt of 270 byte
messages. There is a fixed cost per byte, a monthly subscription fee and
purchasable SBD modems that can be interfaced with to send and receive
data.[4]

6National Marine Electronics Association 0183 data specification.

Tom Blanchard 9

2.6 Buoyancy Control

Archimedes said:

“Any object, wholly or partially immersed in a fluid, is buoyed
up by a force equal to the weight of the fluid displaced by the
object.”[11]

For an object to float in a fluid it must be less dense than the fluid, i.e. for a
certain volume of both the object and the fluid, the object must weight less.
In the case of water, the weight of water displaced is directly proportional
to the volume displaced, assuming that the density remains uniform. To
consider it from another angle, if there are two objects of equal weights but
different volumes immersed in a fluid, the object with a greater volume is
more buoyant.

This means to submerge a floating object it must either decrease it’s
volume or increase it’s weight. To make a submerged object surface the
volume must be increased or the weight decreased. It is generally easier to
change your volume than your weight and there are various techniques that
are currently used. Submarines pump water into tanks to take on weight
and pump it out to lose weight. Divers often carry inflatable packs that
they can fill with air from their tanks, increasing their volume. Argo Floats
fill an external bladder with hydraulic fluid to increase their volume and
many gliders do the same. There has been research into buoyancy control
using wax that has a very low melting temperature. The difference in water
temperature at the surface and at depth is enough to melt or solidify the
wax, which results in a change in volume that could potentially require no
power.

It is also important to be neutrally buoyant at a certain depth, this
means that an object is as dense at the water around it and won’t sink or
rise. This allows you a “rest” depth which requires no energy to maintain.
The effects of drag and the viscosity of the water affect the rate at which
you move through water, but it was felt that this isn’t worth exploring in
too much detail for my project. Another issue is that of stability, floating
objects are vertically stable, but not rotationally stable. This may cause
problems with the tether but should be relatively simple to solve.[27]

2.7 Sonar

Sonar (SOund NAvigation and Ranging) is the use of sound propagation for
navigation, communications and object detection. As a technology it can
be divided into passive and active sonar. Active sonar produces pulses of
sound and listens for the echoes, whereas passive sonar just listens. The word
sonar often refers to the equipment used to generate the pulses and listen to
responses. The frequency of sound used ranges from infrasonic to ultrasonic
depending on the application. Lewis Nixon invented the very first passive

Tom Blanchard 10

sonar “listening” device in 1906. The technology was later demonstrated
in 1914 where Reginald Fessenden showed that it could be used for depth
sounding, underwater communications (using Morse code) and echo ranging.
In 1915 Paul Langévin used sonar for detecting submarines and during the
first and second world wars the technology was improved significantly[3].

There are several factors that affect the speed of sound in water, such as
salinity, pressure and temperature. These should all be taken into account
when trying to get accurate distance information. Also, as the ocean tem-
perature varies with depth, sound can be refracted in unexpected ways. This
is especially true of the thermocline, a layer of water from about 30-100m
that “separates” the warm upper layer and cold lower layers of the ocean.
Shallow waters can also provide problems as sounds are reflected off the
bottom and surface, this could cause problems but tests will be conducted
when a working sonar module is acquired.

Tom Blanchard 11

3 Requirements

3.1 Objectives

The objectives listed here are the general goals of the whole system. It is not
expected that they will all be met within this project, but serve as something
to aim for. Some are not quantifiable and thus hard to measure or test,
regardless of this the design should take these objectives into consideration.
Any decisions that result in negatively impacting progress towards a goal
will need to be strongly justified.

� Create a tethered data buoy that can autonomously take water quality
samples at a variety of depths at the calving front of a glacier.

� Transmit the data in real-time, enabling faster examination and dis-
semination.

� Keep the costs as low as possible including the initial cost, maintenance
and running costs.

� Make the system easy to use for a people with low/no programming
or electro-mechanical skills.

� Record at least conductivity, temperature and depth measurements
and provide the facilities for more types of measurements.

� Create a robust system that can function as intended, completely unat-
tended for long periods of time.

� Meet all requirements detailed in the following section.

� Produce a system that can be further developed to add extra or more
complex functionality.

3.2 Requirements

These are the requirements that have determined after several conversations
between the author and their supervisor and with various geographers and
glaciologists who were interested in the project.

1. Sample water continuously at a rate of 1Hz.

Tom Blanchard 12

2. Transmit a reading every 10m of ascent, store the rest of the data
internally.

3. Water samples should include the following data: depth, tempera-
ture, conductivity. Other measurements such as dissolved oxygen and
chlorophyll content would also be of use if available.

4. The buoy should be completely autonomous and should reliably re-
cover from faults.

5. The data should be transmitted in as close to real time as possible.

6. All data should be timestamped with accurate GMT time so that it
can be matched to any events that occur.

7. The buoy should perform a profile every 6 hours.

8. The buoy should be able to detect ice above it and stop its ascent, to
prevent damaging itself.

9. If the buoy cannot transmit the data collected it should be stored and
an attempt should be made to send it again as soon as possible.

10. The buoy should be tethered.

11. The buoy should be able to operate at depths of up to 200m.

12. The buoy should be easy and quick to deploy and retrieve.

13. The buoy should be of a comparable price to any similar products.

14. The buoy should have enough battery power to function for 1 year.

15. The buoy should be re-deployable after recharging the battery and
retrieving data.

3.3 Desirable, non-essential Features

There are several features that have been determined to be outside the scope
of this project but would be considered beneficial. Completing any of these
features will only be considered if all other requirements have been met.
Designing the system so that these features could later be implemented is
also desirable.

� Two way communication.

� Measuring the thickness of any ice above.

� Sending status messages with information such as battery voltage and
number of profiles done.

Tom Blanchard 13

The main goals of the project are to make a robust and reliable system that
can operate for long periods of time autonomously. While, as a computer
scientist, the scope of the project is focused on software engineering and
not the engineering and design of the actual buoy the author feels that
considering these areas in depth is critical. To this end it is the intention
of the author to build the complete system; software, electronics and other
hardware with the goal of having a complete and usable system by the end
of the project. The end users of the system consider a ‘long period’ to be
approximately 1 year, so the system will be designed to have enough power
to last 400 days. This should allow the author a small margin for error.
The requirement that the system be able to operate at a depth of 200m is
challenging from an engineering perspective, for testing 20m will suffice but
the system will be designed with depths of 200m in mind.

Tom Blanchard 14

4 Methods and Tools

4.1 Methodology

Although this is the largest project the author has undertaken, as projects go
it is still a small one. This coupled with the fact that the author is working
alone, rather than with a team of people, leads him to feel that there isn’t
any one Process Model that would be entirely suitable. The temptation
is therefore to fall back on the “Hacker Methodology” or absence of any
coherent structure; however, the author feels that this is not appropriate.
Despite being a small project the author feels that it can benefit from many
aspects of other methodologies and has therefore come up with their own
model. In fact it is often argued that projects involving only one or two
people require no methodology at all; “The specific methodology used in
performing any of the tasks does not need to be coordinated when only
one or two people are involved.”[26]. Many lone developers claim to use
eXtreme Programming (XP) to cover the fact that they don’t adhere to
a methodology and while there are certainly elements of XP that can be
considered in single developer projects, generally XP has a heavy focus on
being part of a team. There have been discussions on adapting XP for
one person[2] but the author is still not convinced of it’s suitability in this
instance.

Figure 4.1: The variation of the waterfall method used in the project. The
main difference is the approach to implementation and testing.

Tom Blanchard 15

The methodology that the author has based his own methodology on is
the Waterfall Methodology[24], from it is taken the over-all “structure” of
the project; first analysing the problem then specifying requirements, de-
signing, integrating and then testing. The last two “phases”: deployment
and maintenance do not really fit into the scope of this project as the au-
thor expects the result of the project to be a tested and working control
system but the physical device to still be a prototype. The author will
be following the linear path through the phases, not looping back, this is
due to unavoidable constraints such as hardware limitations and access to
equipment preventing all but minor changes to the requirements. While
this could be considered restrictive the author believes that by keeping in
contact with several glaciologists at the University he can make sure that
the requirements will be adequate before moving on to the design phase.

The approach used for implementing, integrating and testing the soft-
ware and hardware is taken from a different methodology. The author
considered a risk based approach but decided that there was a chance of
spending too much time trying to get the more complicated things working
perfectly first and not progressing satisfactorily. Instead this phase of the
project will utilise a form of RAD1[12] which is an incremental iterative ap-
proach. Although it is not expect that requirements will change as a part of
the implementation phase, it is felt that this style of incrementally building
up functionality and continually iterating, suits this type of project. The
project will be split into “sections”, a section will then be developed, in-
tegrated into the whole system and the process repeated until all sections
have been completed, at which point iterations will cover the whole project.
At this point the system should meet all of the requirements and full system
and acceptance tests can be carried out.

4.2 Development Tools

4.2.1 Programming Language and IDE

For ease of development the author has chosen to use the MPLAB IDE and
C18[6], which is an ANSI compliant C compiler for PIC18 microcontrollers.
The IDE is very basic but offers features the like estimated memory usage for
EEPROM, ROM and RAM the compiled program and support for different
memory models. MPLAB and C18 are nicely integrated with each other and
while MPLAB isn’t a fantastic IDE, lacking integrated version control or any
advanced editing capabilities, it is acceptable for a project of this size. This
choice of development software also means that the author will primarily be
working on systems running the Windows XP Operating System although
it is possible to get MPLAB almost completely functional on Linux using
wine2.

1Rapid Application Development.
2A compatibility layer for running Windows programs on Unix systems

Tom Blanchard 16

Figure 4.2: MPLAB IDE.

C18 is almost identical to ANSI C99, the primary differences being that
some functions are only partially implemented and a few others not imple-
mented all. Two examples of this are the printf function which is imple-
mented in it’s entirety except for the ability to print floats or longs and the
sscanf function which is not implemented. Unfortunately these exceptions
are not particularly well documented and rarely throw any errors during
compilation, thus trying to use printf to print a float will compile and run
but not work as expected.

Version Control and Coding Standards

Although facilities for SVN33 were made available, the author chose not to
use them because there was no integration with the IDE. A program like
TortoiseSVN could be used to apply version control to the project folder;
however, the author has had some bad experiences with SVN. Instead to
backup project files the project directory will be compressed and stored on
the central university filestore. This only takes 30 seconds and the university
filestore is, in turn, suitably backed up by the universities I.T. staff.

The author had originally intended to follow an embedded C coding
standard. However, the author was unable to procure a copy of Netrino’s
book detailing this standard and so no official embedded standard will be
followed while programming.

3Subversion software versioning system.

Tom Blanchard 17

4.2.2 Programming Hardware and Debugging

Programming the microcontroller will be done via USB using the FS USB
programming software supplied by the company, Microchip, that makes
them. Debug information will be sent via RS232 Serial to a host computer
running a communications terminal which will allow the data to be either
viewed or recorded to a file.

Tom Blanchard 18

5 Design

This chapter first covers the different hardware components that have been
selected for the project, the reasons for selecting them and how the decisions
effect other aspects of the project. The commands needed to generate the
necessary responses will also be shown and any additional circuitry required
will be detailed. The software design is then presented including the con-
trol system architecture, any algorithms developed, files required/created
and flow diagrams of complex code sections. Lastly plans for mechanical
construction of the buoy and any materials needed is discussed.

5.1 Electronic Hardware

The block diagram (Fig. 5.1) below gives an overview of the different hard-
ware elements of the buoy and the connections between them.

Figure 5.1: Simplified block diagram showing the hardware components
and the connections between them. The diagram shows that the system
uses 4 serial connections, one i2c connection, one CCP enabled input and
five digital outputs for power and actuator control.

Tom Blanchard 19

5.1.1 PIC Microcontroller

The first decision made was to use a microcontroller as the only piece of
control hardware. There was an option to use a Gumstix1 computer instead
of, or in parallel, with the PIC. The Gusmtix is far more powerful in terms
of processing power2, it has a file system and storage is easy to add. It
also has pre-made add-on boards that offer increased functionality such as
networking and I/O. There are several reasons for not choosing to use the
Gumstix; firstly it is felt that the system doesn’t require the amount of
processing power such a device would offer, secondly many of it’s other
features are not of any use in the project, and lastly the power requirement
is much higher than that of a microcontroller.

The next decision was the choice of which type of microcontroller to use,
there are many kinds such as ATMEL AVRs or Parallax Propellers and this
is where the department’s experience was very helpful. They had done a lot
of work with PICs3 and so a PIC 18F4550[9] was chosen, a microcontroller
that they had a lot of experience with. Another reason for this choice was
so to save the author from designing all of the hardware himself, as there is
a pre-existing prototyping board called a PICDEM FS-USB Demo-Board.
This is a pre-assembled circuit for this microcontroller that has all of the
necessary electronics needed to power and use the PIC. This includes power
regulation, oscillators, reset buttons, USB programming support and easy
access to pins. The downside of using the PICDEM board is that it is fairly
large and requires more power than a custom made circuit. However, it was
felt that designing a circuit to take it’s place would require too much time
for it to be worth it for the project.

The PIC has 32KB of Program Memory, 2KB of RAM and 256B of
EEPROM4, although these are very small amounts only the amount of RAM
is considered to be a potential problem as the project will involve some fairly
large data structures. There are also 16 i/o pins, 3 timers, a 13 channel 10bit
ADC5 and runs at 48Mhz. One fairly important fact is that the PIC has only
one serial port, whereas the design calls for 4. This means that three will
need to be implemented in software which limits their speed to 4800bps6.
This was not expected to be a problem given as most hardware supports
this speed.

5.1.2 Satellite Communications Modem

This was another area where both the author’s experience and the experience
of his supervisor proved to be very useful. Previous experience with Iridium

1A small “gumstick” sized computer capable of running Linux.
2500Mhz clock speed compared to the 48Mhz of the PIC.
3Programmable Integrated Circuit
4Electrically Erasable Programmable Read-Only Memory.
5Analogue to Digital Converter.
6Bits per second.

Tom Blanchard 20

SBD modems, in particular the 9601 SBD7 modem simplified the choice.
The choice of the Iridium 9602 modem was due to it’s more compact size,
lower power requirements and it’s backwards compatibility with commands
for the 9601. Another important factor in this decision was that Iridium has
very good coverage over the entire globe including the poles, whereas other
satellite networks coverage often deteriorates near the poles. As the buoy is
designed to be used in places like Greenland and should stay surfaced for as
short a time as possible, this is a crucial design decision.

The modem is very small (40mm square, 13mm deep), weighs only 3g
and has a peak power consumption of 10W while transmitting. The power
consumption is especially impressive and considering that a message can be
sent in 1 second it is perfect for this project. Communication is achieved via
a 0v-3v serial connection and AT commands, although the PIC uses 0v-5v
on it’s i/o pins from previous experience the two should be compatible. The
commands needed to send an SBD message are as follows:

1. AT+SBDWT - The command to write data to the modems output
buffer. Response: READY

2. Now send the message data followed by a Carriage Return. Response:
0 or 1 (succeeded or failed)

3. AT*R1 - Turns the radio on. Response: 0 or 1 (succeeded or failed)

4. AT+SBDI - Initiate the transfer. Response: 0, 1 or 2 (No message to
send, succeeded or failed)

There are other commands for functions such as flushing the output
buffer but the documentation says that they are not essential for correct
operation, so for the sake of simplicity they have been omitted. If this
causes a problem it will be reinvestigated during the implementation phase
of the project.

5.1.3 Water Sampling Hardware

This is an area where there is really very little to differentiate two products.
The measurements taken by different units are often equally accurate and
precise, most offer the same sensors and depth rating is the main factor in
terms of cost. The choice to use the YSI 6600V2 Sonde was due to the fact
that the department already owned one and because the glaciologists who
are interested in the project consider it adequate. It is can withstand depths
of approximately 200m and contains sufficient battery to power itself for a
full year.

It uses an RS232 level serial connection for communication and outputs
NMEA formatted data. Some configuration is needed to set the sample
rate, but once set up all settings are stored permanently. To get a constant
stream of data requires the following commands:

7Short Burst Data

Tom Blanchard 21

Figure 5.2: The YSI 6600V2 Sonde used in this project.

1. Send Escape character several times to wake up the Sonde.

2. Send “nmea” and a Carriage Return.

After it has performed its cleaning routine (which takes approximately
45 seconds) it will continuously output data until commanded to stop. It is
worth noting that the Sonde will perform this self cleaning routine whenever
it feels it needs to, there is no control over this aspect. To power off the
Sonde:

1. Send Escape character several times to stop the output.

2. Send “sleep” and a Carriage Return.

5.1.4 Storage

The use of EEPROM modules for storage was seriously considered as there
are several EEPROM chips that utilise an ‘i2c’8 bus for communication.
The particular EEPROM chip considered was a 24FC512 from Microchip,
which could store 512Kbits and had the additional feature of being able
to work with 7 other EEPROM chips connected to the same i2c bus as
one 4Mbit EEPROM. It was also low power needing only 5mA to write
and 400uA to read. The main problem with using these devices was that
4Mbit, or 500Kbytes, split over 400 days is 1.25Kbytes a day of space. If
every reading is only 25bytes, which is rather optimistic, then that means
that there is only space to store 50 readings a day, split over the 4 profiles
required a day means there is only space to store 12 measurements per
profile. This is nowhere near enough, a far better amount would be one
measurement per meter, which for a 200m buoy would result in 200 per
profile or 800 a day. Using a more realistic 75 bytes per measurement this
equates to 24MBytes in 400 days. Due to this it was decided that a micro
SD card module would be a better choice, this would allow the use of micro
SD Cards up to 2GBytes in size. It will also make retrieving the data much

8Inter-Integrated Circuit bus

Tom Blanchard 22

easier as the SD card can simply be removed and a new one inserted in its
place.

Figure 5.3: The 4D Systems Micro SD Card module used in the project.

A 4D-Systems GOLDELOX micro SD Card[25] module was chosen as
recommended by the author’s supervisor who had previous experience with
them. It requires a 5v power supply, uses 250mA at peak and uses an
autobauding 0v-5v serial connection for communications. It also has the
benefit of integrated FAT16 support which means that the data will be
correctly formatted into files making it much easier to retrieve, as opposed
to copying the data byte by byte. In order to help keep things simple
parameters for commands have been chosen to prevent handshaking which,
for small amounts of data (less that 512bytes), is considered acceptable.
Commands are in hexadecimal byte form, the following describes how to
autobaud the connection, initialise the card, write a file and read a file
(hexadecimal values are shown as 0xValue).

Autobaud

1. Send 0x55 - Autobaud command (May require several attempts). Re-
sponse: 0x06 or 0x15 (Accepted or Not Accepted.)

Initialise Card

1. Send 0x40 - Indicates next command is a FAT command.

2. Send 0x69 - Initialise command. Response: 0x06 or 0x15 (Accepted
or Not Accepted.)

Tom Blanchard 23

Write File

1. Send 0x40 - Indicates next command is a FAT command.

2. Send 0x74 - Write file command.

3. Send 0x80 - Append mode with no hand-shaking.

4. Send Filename followed by 0x00 to null terminate.

5. Send size of data to be transmitted split into 4 bytes in big-endian
format. Response: 0x06 or 0x15 (Accepted or Not Accepted.)

6. If received 0x06 then transmit data. Response: 0x06 or 0x15 (Accepted
or Not Accepted.)

Read File

1. Send 0x40 - Indicates next command is a FAT command.

2. Send 0x61 - Read file command.

3. Send 0x00 - No hand-shaking.

4. Send Filename followed by 0x00 to null terminate. Response filesize
split into 4 bytes in big-endian format.

5. Send 0x06 to accept or 0x15 to reject the file. Response data: or 0x15
(Not Accepted)

6. Once all the data has been sent 0x06 is received.

5.1.5 Buoyancy Control

Several different possibilities were considered for controlling the buoys buoy-
ancy, the first was to use a linear actuator and piston to displace water in a
tube, the second was to use compressed air to do the same, the last was to
pump oil from an internal bladder to an external bladder. Using compressed
air would be easier and require less engineering than the other two solutions.
However, it is simply not possible to fit enough compressed air into the buoy
to be able to operate for the 400 days necessary. The amount of air needed
to provide a fixed increase in buoyancy changes as air is consumed, due to
the fact that the weight of the tank changes. This need to compensate for
the weight of the air in the tank effectively rules it out as a possible solution.
The following formula was used to determine how much air would be left in
the tank when trying to change the buoys buoyancy:

n+ 1 = n(b ∗ p+
(n ∗ w ∗ p)

1000
) (5.1)

� n= Previous result (Starting at 2400, the amount in litres of air in the
full tank).

Tom Blanchard 24

� n+ 1 = Air left in the tank.

� b = Desired change in buoyancy (in litres).

� p = Pressure (in atmospheres, 1atmos per 10m down).

� w = Weight of 1 g of air.

Using this formula a program was created that would iterate until the
amount left in the tank became less than 0 indicating an empty tank. Using
an 8Ltr tank at 300bar (2400 litres of air), ascending from a depth of 200m
and trying to change volume by 125ml it was calculated that the tank would
only last 127 ascents or 31.75 days, as shown in the Appendices, Fig D.2.
Further calculations showed that even with 10 million litres of air it would
only last 113 days!

This left two possibilities; pumping oil between internal and external
bladders and an actuator displacing water from a tube. The limiting factor
in the pump design is the pump itself in particular its pumping pressure.
The limiting factor in the actuator design is how much force the actuator can
produce. It was decided that, due to the less complex engineering required,
the actuator design would initially be used. Using an actuator and piston
set-up is, by no means, without its own drawbacks; mainly the amount of
force requires to move the piston at great depths. But at 200m it is certainly
possible using an actuator with around 4000N of force to displace 200ml of
water, a graph showing actuator force vs depth is shown in the Appendices,
Fig D.1. Controlling the actuator is very simple, as they are powered by
a DC9 motor. Two relays allow power and ground to be connected across
the motor in both directions. The circuit being used is shown in the Power
section, the motor is expected to draw 15A at full load which will take up
the majority of the system’s power budget even though it is only run for a
few minutes a day.

5.1.6 Sonar

So that a custom made circuit does not have to be made a pre-made sonar
kit will be used, which is readily available from many online retailers. More
specifically a Velleman ultrasonic car parking sensor will be used. The trans-
ducers will need to be replaced with waterproof versions and it will need to be
integrated with the rest of the system. The circuit outputs variable width
pulses that change with the range of a detected object. Using the PICs
Capture functionality it will be possible to measure the length of pulses and
therefore the distance of a detected object. Although the kit only has a
range of 1.5 meter, sound travels around 4.3 times faster in water than in
air which effectively increases the range to approximately 6.5 meters.

Since the hardware is responsible for creating and detecting the sonar
pulses the remaining work lies in making sense of the output from the sonar

9Direct Current.

Tom Blanchard 25

hardware. It was decided that an interrupt based approach should be used
as it removes the need to poll the sonar for the entire duration of the ascent.
The PIC has a CCP10 module that is ideal for this kind of application.
The maximum pulse length needs to be determined, this is so that a timer
pre-scaler can be chosen allowing use of the timer without it overflowing.
This will need to be done by looking at the output on an oscilloscope and
measuring the pulse length. The CCP module is configured to interrupt
on a rising edge and peripheral interrupts are enabled. When the interrupt
occurs the timer value is recorded and the CCP module reconfigured to
interrupt on a falling edge. When this interrupt occurs the timer value is
again stored and the first timer value subtracted from it.

timer value ∗ pre− scaler ∗
(

1

clock speed

)
(5.2)

The PIC being used for the project runs at 48Mhz, using the biggest pre-
scaler available (256) and an example timer value of 50 would indicate a
pulse length of:

50 ∗ 256 ∗
(

1

48Mhz

)
= 6.4 · 10−4seconds (5.3)

5.1.7 Real-Time Clock

So that data can be timestamped with an accurate time it will be necessary
to use a Real-Time Clock module, this is an accurate electronic clock that has
its own battery so that the internal oscillator is constantly running should
its external power supply turn off. The Sonde also has an internal clock
but it tends to drift and so does not keep time particularly well during long
periods of inactivity. The particular RTC module has been chosen is based
on a DS1307[23] chip, it requires a 5v power supply and uses 1.5mA when
in use or 500nA when using it’s battery. It uses i2c for communications on
address D0 and uses seven registers to store seconds, minutes, hours, day of
the week, date, month and year. The format of the registers is BCD11, with
values being split into 10’s and digits, thus 45 is stored as the combination
of two nibbles; 0100 (4 in binary) and 0101 (5 in binary) equalling 01000101.
The reason for this is not explained but it does make setting and decoding
the time slightly more complex.

5.1.8 Power Consumption and Control

Something else that is vital for the design is how much electrical power the
system will need to operate for the requisite 400 days. The Sonde contains
its own battery capable of powering it for the full extended year. Table 5.1
shows voltage and current requirements, how long each hardware component

10Capture Compare and PWM
11Binary Coded Decimal.

Tom Blanchard 26

Item Peak Current Voltage(V) Duty Cycle(s) Joules a day

Sonde n/a n/a n/a n/a
Iridium 1500 5 120 3600
PIC 60mA 12 900 2592
Storage 250mA 5 15 75
Actuator 15A 12 20 14400
Sonar 30mA 12 900 1296
RTC 1.5mA 5 900 27

Total 21990

Table 5.1: The power requirements of the different components

is on for and how many joules per day each piece of hardware uses. The es-
timate of joules used is an extreme one using the maximum current and the
pessimistic value of how long each must remain on. This pessimistic view
of the system’s power consumption shows that the system uses 21963 joules
a day. This means that a battery that can store 400x 21990 = 8.796MJ is
needed. In reality after testing this number should go down, also during the
winter the surface is likely to be frozen so the buoy will not be able to use the
Iridium SBD modem which is responsible for a sixth of the power consump-
tion. The actuator also only draws 15A when it is under its maximum rated
load which may be the case at 200m, but at the surface it won’t be under
much load in comparison so the current usage should drop substantially.

The system will therefore require batteries with a capacity of at least
8.796MJ, the energy density of batteries varies with the technology used,
a break down of the properties of different battery technologies is shown
in Appendices Table B.1. It is clear that only batteries with a very high
energy density are suitable, such as Lithium Polymer or Lithium Ion. Us-
ing either of these technologies would require 12.21Kg of batteries which
is acceptable as the batteries can double as ballast to help make the buoy
neutrally buoyant. There are other technologies that have a higher energy
density, such as Lithium Thionyl Chloride (2.5MJ/Kg) which would mean
less weight (3.5Kg) but they are more expensive and harder to source. Due
to the high cost of large quantities of any type of battery, a small quantity
of Lithium Polymer batteries will be used for testing, one 3-cell 11.1V pack
should be sufficient for this purpose.

As previously mentioned certain pieces of hardware need to be turned
on or off to save power, this will be achieved by using a combination of
relays and transistors. A table showing the power state of hardware modules
during each system state is shown in the Appendices, Table A.1. The sonar,
SD Card module and the satellite modem all use relatively small amounts
of power so can be switched on small logic level relays, the motor for the
actuator will need transistors driving the coils of bigger relays. The circuit
that will be used is shown in Figure5.4, the transistors and relays used for
the motor will be rated for higher current but otherwise the circuit will

Tom Blanchard 27

essentially be the same. This can be built on vero-board with components
available in the workshop. Five outputs from the PIC will be needed to
control the transistors and relays

Figure 5.4: Circuit for driving the motor or power relays from a PIC output,
two will be needed to control the motor and three for power control to various
pieces of hardware.

Tom Blanchard 28

5.2 Software

5.2.1 State Diagram

The overall system architecture that will be used is based on the state model
shown in Fig. 5.5, a change in states occurs when certain parameters are
met or after a certain amount of time has elapsed. The four states are as
follows; SAMPLE, TRANSMIT, DIVE and SLEEP. In the SAMPLE state
the buoy will turn on the water monitoring hardware, increase its volume to
rise to the surface, start taking and storing measurements and lastly use the
sonar module to detect if there is an obstacle above. The TRANSMIT state
handles sending the data stored for transmission via the satellite modem.
The DIVE state decreases the buoys volume and monitors the depth until
the target resting depth has been reached. Lastly the SLEEP state keeps
the buoy at the resting depth with all of the hardware turned off- until the
next sample should take place. The reason that a state based approach is

Figure 5.5: The state diagram describing the control system’s behaviour.
The diagram shows all of the states and the transitions between them with
arrows indicating the direction of the state change. The labels next to
the transition arrows indicate the condition that must be passed for the
transition to occur.

being used is for simplicity. It translates into code very well and during
development allows the code to be split up into easily testable sections.
These can then be implemented one state at a time, tested and integrated

Tom Blanchard 29

into the rest of the system. Also possible is the enabling or disabling of
states to more easily debug any issues. Lastly it provides a simple fault
recovery mechanism by tracking the current state which allows it to be
resumed should something go wrong.

Sample State

In this state the Sonde is sent commands to wake up and start outputting
data, the buoyancy is altered to make the buoy positively buoyant and the
system then waits until the Sonde starts sending data. Once a NMEA
string is received it is parsed, extracting just the data to reduce the amount
of information to process, and the current depth is also extracted for use
elsewhere. The parsed string is then stored in the main data log on the SD
Card and a check is performed to determine if this reading should also be
transmitted via satellite. If it should, then it is written to a message file
along with a time-stamp from the RTC. The algorithm for determining this
described is below.

count ← Current resting depth / desired measurement interval;
upper bound ← (count * desired measurement interval) + deadband;
lower bound ← (count * desired measurement interval) - deadband;
if (depth ≤ upper bound) && (depth ≥ lower bound) then

count−−;
Write parsed NMEA string to message file;
Write RTC to message file;
string count ← string count + 1;
if string count < 2 then

string count++;
else

string count ← 0;
message number + 1;

end

end
Algorithm 1: Algorithm to calculate if the NMEA string at the current
depth should be stored in a message file.

Three readings with time-stamps can fit into a 340 byte SBD message
and the number of the of message files is tracked. This is done by storing the
number of message files and the number of the last sent file in EEPROM and
adding this value onto the filename parameter passed when writing to the SD
Card. To use an example; the buoy rises from 200m storing a parsed NMEA
string every 10 meters, 3 of these strings fit into one message file so there
will be a total of 7 message files. The depth is then checked to determine if
the buoy has surfaced, if it has then it switches state to TRANSMIT. Lastly
the buoy checks for any obstacles above using the sonar, if an obstacle is
detected then it changes to state to DIVE.

Tom Blanchard 30

Transmit State

The SAMPLE state will ensure that the Satellite Modem is powered on
before changing to the TRANSMIT state, once in this state the current
message number is compared to the number of sent messages. This provides
a method of determining how many and which messages are still queued to
be transmitted. If the current message number was 8 but the last message
sent was 4 then 5-8 still need to be transmitted. If there are no messages
to send then move to the DIVE state. If there are messages to send then
construct the filename (m+message number+.txt) and read the message file
from the SD Card. Attempt to send the message, if the modem reports that
the message has been sent then increment the number of sent messages and
write the value to EEPROM. Now loop to check for more messages to send.
If the modem rejects the message (due to inability to transmit) then change
to DIVE state. Before transitioning to the DIVE state the SD Card and
Satellite Modem are both powered off to minimise power consumption.

if messages sent < total messages then
filename ← “m” + messages sent + “.txt”;
Read message file;
Try to transmit message;
if message was sent then

messages sent++; Write messages sent to EEPROM
else

Turn Satellite Modem Off;
Turn SD Card Module Off;
Move Actuator;
Write new state value to EEPROM;
Change state;

end

end
Algorithm 2: Algorithm for queueing and sending messages.

Dive State

This is a very simple state, monitoring the current depth using the Sonde
and waiting for it to equal the resting depth. Once resting depth is achieved
then move to SLEEP state.

Sleep State

This state is also relatively simple, it stops the actuator to ensure it is not
left powered whilst sleeping and then commands the microcontroller to sleep
for a pre-configured amount of time. As the length of the sleep interval is
known to approximately 1 second there is no need to check the time RTC
time. A sleep period of 2 minutes and 20 seconds has been chosen (for

Tom Blanchard 31

reasons described in the Fault Handling section), which requires the sleep
function to be run 154 times to achieve just under 6 hours of sleep.

5.2.2 Fault Handling

The author considers fault handling and the ability to recover from errors/-
faults to be critical to the project. It should be noted that the type of
errors dealt with are ones that still allow the buoy to operate. For example,
faults caused by communications error, the SD card, satellite modem, or
any other hardware component failing to respond should be detected and
recovered from by the system. However, if the buoyancy control stops work-
ing then there is no way of recovering, the buoy is stuck at whatever depth
it is currently at. This also raises the point that there is no “safe” state for
the buoy to retreat to, rising to the surface and staying there risks freezing
or crushing due to ice, staying at depth makes it irretrievable. This means
that even if it were possible to detect a “fatal” error there is no reliable safe
procedure to carry out. One possibility would be to attempt to rise to the
surface and transmit a help message, the effectiveness of which is debatable
as it extremely unlikely that there would be anyone close enough to fix or
retrieve it.

The method used to recover from smaller faults utilizes the watchdog
timer and the system desired state. The watchdog timer is a hardware timer
that, when enabled, counts down to 0 at which point it resets the microcon-
troller. During normal operation the timer is prevented from reaching 0 by
resetting it every time around the control loop; however, when a hardware
component stops responding the program effectively “hangs” and the watch-
dog timer will count down and reset the system. Configuring the watchdog
timer is done by setting a pre-scaler during programming, which divides the
clock frequency by the pre-scaler value to increase or decrease how long it
takes the watchdog to reach 0. As the watchdog is also used for sleeping
there is a trade off between a pre-scaler value that allows the system to
respond to faults quickly and a pre-scaler value that doesn’t require the mi-
crocontroller to wake up excessively(which uses power) during its sleep loop.
It was felt that the time taken to reset the system due to a fault should be
no more than 5 minutes and that the PIC should not sleep for less than 1
minute. A pre-scaler value that resulted in sleep/reset period of 2 minutes
and 20 seconds was chosen.

To re-enter the correct state upon restarting the current state must be
tracked. To ensure this happens every time a state transition occurs the
value of the state being transitioned to will be saved to EEPROM. At the
start of the program this value will be read from EEPROM and allowing
the program to jump back to that state. To use an example; the satellite
modem stops responding, several minutes later the watchdog resets the mi-
crocontroller, upon restarting it is determined that TRANSMIT was the last
state and the program returns to the TRANSMIT state. This, of course,
relies on being able to solve the problem by powering devices on or off, more

Tom Blanchard 32

Filename .c file .h file

main
√

eeprom
√ √

sd
√ √

sonde
√ √

sat
√ √

uart
√ √

uart sd
√ √

uart sat
√ √

Table 5.2: Files.

complex diagnostic systems would be very difficult to fit onto such a small
microcontroller.

5.2.3 User Interaction

So as to make the system as simple as possible user interaction has been
minimised as much as possible. The only remaining interaction is turning
on the buoy and retrieving data, the first involves flicking a switch and
putting the lid on the second requires removing the lid and removing an SD
Card to copy the data files. Data sent by Satellite Modem arrives by email
to a specified address. It is felt that this will allow the system to be used
by less technically minded people.

5.2.4 Files

As a Procedural language is being used rather than an Object Orientated
language, to give some indication as to the intended structure of the code,
table 5.2 shows the code files (file type) that will be in the project. There
will be two types of file created by the PIC on the SD Card. The first will
be the main datafile, called “DATAFILE.TXT”, of which there is only one
containing every Sonde reading. The second type are message files, these are
small files under 340 bytes in size that contain the data to be transmitted
via the satellite modem. They are named sequentially “m0.txt”, “m1.txt”,
“m2.txt”... etc and contain up to 3 Sonde readings, each timestamped with
an RTC value.

5.3 Mechanical Hardware

5.3.1 Body Design

The body of the buoy needs to be able to withstand significant pressures
and so it must be made from a strong material ideally in the form of a tube.
The choices of material available are acrylic, steel or aluminium with the
second two being preferable due their high strength. A tube 500mm long,

Tom Blanchard 33

Figure 5.6: Side view of the buoy. The clamping plates are compressed by
tightening nuts at either end of the threaded rod. The plates help create a
good seal around the top lid and compress the o-ring around the Sonde.

with a 200mm diameter and 5mm thick wall is physically large enough to fit
everything needed inside. It is obvious that this tube will weight significantly
more if made from steel than acrylic, in fact it would weigh approximately
26Kg; however, this also means that it is negatively buoyant as it would
only displace 15.7 litres of water. Even if the wall thickness is reduced, it
would still be very heavy. This would give a smaller margin for error and
it is much easier to add weight to the buoy than to increase its volume. It
was decided that acrylic would be the better choice as the cost of aluminium
tubing is quite high and it is easier to work with acrylic. While acrylic is
not as strong, it should be capable of withstanding depths of 30-40 meters.

The top and bottom of the tube will be sealed with two “lids”, machined
to be a tight fit. The bottom lid will be glued into place with an acrylic
solvent which will make a strong and water-tight seal. The top lid will be
compressed downwards by a clamping plate and will be sealed using either
a rubber o-ring or a removable sealing agent such as silicone. The bottom
lid will also have two holes cut out, one for the sonde and the other for the
actuator-piston tube, the first will be sealed with an o-ring the second will
be glued in place. The main reason for keeping part of the sonde inside the
buoy is that it makes the structure easier to handle and also removes the
need to waterproof cables and connectors.

Tom Blanchard 34

5.3.2 Actuator Design

The actuator mechanism will be a sealed piston design using several greased
rubber o-rings to create the seal. The tube will be 50mm diameter, 3mm
wall acrylic and the actuator will have a stroke length of 100mm. Using the
formula below the volume of the resulting displacement can be calculated.

π · r2 · h = v

π · 2.52 · 10 = 196.35ml

The the amount of force required to move the piston is dictated by the
pressure acting on it, at 200m this is 20 atmospheres or 2MPascals. The
graph shown in the Appendix D.1 shows that 4000N of force is sufficient at
200m. The displacement could be increased without needing to get a higher
power actuator by increasing the linear travel of the actuator. Due to the
size of pre-made actuators it is a possibility that a “home-made” actuator
will be built and used for the project.

5.3.3 Tether

There are many possibilities for the tether system, some complicated like
powered or sprung reeling mechanisms and some simple, like a piece of
string and a rock. It comes, yet again, down to simplicity. In order to keep
the tether tangle free it will be heavily weighted at one end and be attached
to a small float at the other. To prevent this float from being destroyed
by ice, the tether will be roughly 1m too short which will keep the tether’s
float submerged by 1m. The buoy will be attached to the tether via a 1.5m
stainless steel cable thus allowing run up and down the tether and to surface
as shown in Figure 5.7

Tom Blanchard 35

Figure 5.7: The method used to tether the buoy in place.

Tom Blanchard 36

6 Implementation

6.1 Iteration 1 - Sonar and PIC

Having had previous experience working with PICs, it only took an hour
to set up a project in MPLAB and compile a quick test program. Once
this had been done the author spent a few days re-familiarising himself with
the PIC’s features. A few days later the sonar kit arrived and had to be
assembled which involved soldering roughly one hundred components onto
the supplied PCBs1. Once this was done the circuit was connected to a
power supply and tested to determine its performance. The module buzzed
when it detected an object within a certain distance, which could be varied
between 5cm and 150cm. The sonar transducers that came with the kit were
replaced with sealed waterproof versions, so that the unit could more easily
be tested in water.

Once it was determined that the module was working it had to be mod-
ified so that it would interface with the PIC. The first change made was to
remove the buzzer and look at the output on an oscilloscope. It showed that
the pulses output from the circuit were at 12V, the PIC’s inputs are rated
0v-5v so it would need a voltage divider to bring the level down. The next
task was to configure the CCP module, which was technically challenging

1Printed Circuit Board

Figure 6.1: The shortest and longest pulses produced by the sonar module.
The shorter the pulse the closer the detected object is.

Tom Blanchard 37

but eventually worked sufficiently well that the PIC could be connected to
a frequency generator and calculate the pulse lengths.

After completing the work described above it was decided that, due to
time constraints, it would be wise should move on to the next iteration as a
significant amount of time had been spent working on the sonar. The only
remaining hardware change was to level shift the output of the circuit down
to 0-5V so as not to damage the PIC ADC input, once that has been done
it can all be tested together.

The author intended to come back to this work in another iteration but
after several discussions with his supervisor it was agreed that sonar wasn’t
really appropriate. This was mainly due to the difficulties in detecting the
difference between the surface and an obstacle and the potential failure
modes if the module should malfunction. If the sonar became fouled then
the buoy would never surface. Other possibilities were discussed but it was
agreed that at this point in the project it was best to focus on other parts of
the project. The functionality remains in the code and an obstacle detection
can be simulated be pressing a button.

6.2 Iteration 2 - Sonde

The hardware serial port on the PIC was initially used to communicate with
the Sonde. This had benefit of having the correct voltage shifting hardware
built in and the correct physical connector. However, it was decided the
hardware port should be used for debugging and the Sonde was moved to a
software serial port. Code for this software port had already been written
by the author’s supervisor for previous projects and so this code was used.
The main benefit of this is that the code has been tested for long periods
of time in many different devices and has benefited from several bug fixes.
To use the software serial port with the Sonde a logic level to RS232 level
serial converter had to be built using a MAX232 converter chip. This was
the source of much confusion as, despite functioning perfectly well for a few
weeks, it suddenly stopped working. Further investigation showed that the
circuit had been incorrectly built and once fixed communication with the
Sonde worked flawlessly.

When communicating with the Sonde there is the option to use a menu
system, which offers more features like calibration and the ability to change
parameters such as sample interval. Despite the benefits, autonomously nav-
igating menu systems designed for humans is fairly hard, especially as serial
connections are subject to small levels of data corruption when surrounded
by other electrical items. This could lead to becoming completely lost in the
menu system and accidentally changing the wrong parameter, such as baud
rate, which could stop the sonde from working. Instead the author opted to
use the simplest commands possible; “nmea” and “sleep”.

Some simple code was written to read the incoming NMEA strings, buffer
them and print them out over the debug serial port. The start of a string

Tom Blanchard 38

was detected by waiting for the character sequence “$YS” at which point
characters were buffered until a newline character was received.

6.3 Iteration 3 - SD Card

Now that data could be retrieved from the sonde, it needed to be stored. The
SD Card module was simple to wire up requiring only communication and
power lines; however, a voltage regulator was needed to step down the 12V
to 5v. The SD Card module is autobauding so to set the correct baud rate
the host (the PIC) sends the autobaud command 0x55. Initially the device
would respond with 0x15 which is a NAK (Not Acknowledged) byte, but it
was determined that the module needed a longer delay between power-up
and sending the command. The module occasionally still responds with a
NAK but sending the autobaud command again returns an ACK. The next
command required an SD card to be present so one was formatted to the
FAT16 filesystem. The initialise disk command worked first time, returning
an ACK.

The next task was to try writing to a file, it is at this point that things
started going wrong. As well as the write file command certain other param-
eters need to sent; these include handshaking size, append mode enable/dis-
able, the filename and the size of the data to be written. After carefully
consulting the datasheet the commands were sent. The module responded
with a NAK before the commands had finished being sent, there was noth-
ing in the data sheet to indicate what this meant. After triple checking the
data it was eventually discovered that the data sheet was incorrect in places;
however after determining what the correct commands were, the module still
didn’t work. Eventually one of the support staff on manufacturer’s forums
suggested that the module may be a pre-FAT support version and after re-
flashing its firmware the module worked. It was now possible to read data
from the sonde and log it to the SD Card; however, the SD Card would
intermittently stop working.

It was decided that in an effort to track down the bug, all of the code
would be reworked. However, neither the author nor several other people
who offered to help were able to determine the problem. Eventually after ex-
amining the transmit and receive lines on an oscilloscope and it was noticed
that they were occasionally being pulled low, although there was nothing
in the code that would cause this behaviour. After several more days of
investigation it was discovered that the pins were used as voltage reference
pins for a hardware feature not used in the project. By explicitly turning
off this module the problem was fixed and the SD Card worked reliably.

6.4 Iteration 4 - Real-Time Clock

This iteration was all about data formatting. Firstly, the data from the
sonde is constructed from code/value pairs so that almost 50% of the data

Tom Blanchard 39

is not actually of any use. For example “22, 0.021” means that the depth
in meters is 0.021, since the order of these pairs doesn’t (and can’t) change
there is no need to keep this data. A parser was written that stripped out
the codes and left just the values separated by commas. The next problem
was that the Sonde’s internal clock tends to be rather unreliable. This is
what the RTC module is for, to provide accurate time so that the sonde
readings can be correctly referenced temporally.

Figure 6.2: The register layout for the RTC module, values are stored in
BCD form which seems to be an unnecessary complication.

The module uses i2c to communicate and so there was a choice of using
either the hardware or software based i2c on the PIC. As the pins were not
needed for anything else the hardware based i2c was selected for its easier
set up.

The RTC value is stored at the following times; at the start of an ascent
the value is stored in the main datafile and after each Sonde reading it is
stored in the appropriate message file. Reading the data and time from the
RTC module is simple but the values returned are in BCD format and certain
bits are control bits. To convert into text a byte is read, half masked off and
the bit shift operator used to shift the byte 4 bits to the right. This value
is stored as an integer and then combined with a different masked original
byte. Once the RTC module has had its oscillator started it will continue
to operate until it is disconnected from power and its backup battery is
removed. It was therefore decided that just functions to get the RTC module
would be written.

Tom Blanchard 40

6.5 Iteration 5 - States & Iridium Satellite Modem

By this point there was enough working hardware to start work on imple-
menting the state diagram. The implementation went well and took far less
time than the author had anticipated, within a day it was working with the
Iridium modem being simulated using two buttons. When in the transmit
state one button was used to simulate the message being sent and another to
simulate the message failing to send. To be able to test the states the depth
value needed to change. To achieve this an artificial depth value was incre-
mented and decremented during the sampling and dive states. Testing was
carried out to ensure the states and transitions were working as intended.

The Iridium modem is by far the most complex hardware component in
the project and so it was initially connected to a computer so that commands
could be sent manually. The first problem was that the modem would default
to a baud rate of 19200 which the software serial port used on the PIC
couldn’t handle. While looking for the command to change the default
baud rate, commands to turn off echoing (previously the modem echoed
everything typed at it) and turn on numeric responses were found. These
were then saved to a new profile which was set as the default. There are two
ways of sending the message text to the modem. The first is as part of the
command: AT+SBDWT=“message text”, the second is after the command:
AT+SBDWT CR (Carriage Return) “message text” CR. The first option
limited the length of the message to 100bytes but the second was limited
only by the maximum size of the message, 340 bytes. Before a message could
be sent a buffer large enough to store it in was needed, unfortunately the
linker fails to link files that are “too big” which makes declaring large arrays
almost impossible. The linker file had to be modified to allocate a specific
portion of memory 340bytes in size to the buffer which was then referred to
in the code. An attempt to send a message was made, which despite being
inside the lab, succeeded. The modem was then connected to the rest of
the hardware and an attempt made to send a message using the PIC. This
time it didn’t work. Further investigation showed that the modem didn’t
like being sent the newline character, although no reason could be found in
the documentation, and would stop responding. The fix was simple, just to
change the line delimiter in the message files to a ‘#’ after which the modem
sent the message.

6.6 Iteration 6 - Power Electronics and Actuator

The next task was to control the actuator and power on/off the SD Card
and Satellite Modem. As the SD Card and the Satellite Modem use very
little power, mini relays were used which can be run at 5v. At first it seemed
to work but the PIC would occasionally stop working, which was due to the
amount of current being sourced by the relays. The PIC can only “source”
so much current (30mA) from its inputs and, by exceeding that limit, its

Tom Blanchard 41

Figure 6.3: The top layer of the control system board which contains the
power control circuitry, the satellite modem and the SD Card module.

behaviour became unpredictable. The solution was to add a transistor to
switch the coils of the mini relays which dropped the sourced current from
16mA to 5mA per relay. For the actuator relays the circuit was very similar,
the main difference being that the relays were rated for higher switching
currents and so required a much higher coil current (150mA) which in turn
required a slightly different transistor.

After several consulting with his supervisor the author decided to try
to use a pump to control buoyancy as it offered a much higher change in
buoyancy and could handle greater depths. However, after several weeks of
work the pump wasn’t performing as well as expected. The problem was
that the pump was designed for moving hydraulic actuators and relied on
the fluid going into the pump being pressurised. The decision was made
to return to the actuated piston method of buoyancy control replacing the
bulky pre-made actuator with a geared electric motor. Once the actuator
mechanism was built, a motor sufficiently powerful was needed, all of the
motors that were readily available had plastic gears and would break quickly

Tom Blanchard 42

under the loads involved. A suitable motor was found online and ordered.
Due to stock issues it took around a month to finally arrive which delayed the
project significantly as it was the only remaining item needed to construct
the buoy.

6.7 Iteration 7 - Body Construction

While waiting for the actuator motor to arrive all of the machining and
construction work, that could be done without needing the motor, was done.
Rounds of 15mm thick acrylic were cut out and mounted to a lathe. A“step”
was cut into them so that they would be a very tight fit in the acrylic tube,
doing this to the lids took several hours per lid. The bottom lid was then
mounted on a milling machine and two holes cut, one for the actuator tube
and the other for the Sonde. The actuator hole had to be exactly the right
diameter so that the acrylic glue would make a strong and watertight seal.

All of the electronics were disassembled and re-mounted on two stacked
disks which fit into the acrylic tube. This enabled the easy removal of all of
the electronics if required. Several brackets were glued to the inside of the
tube to support the internal bulkhead, the battery and the electronics board.
When the actuator motor finally arrived it was mounted to the actuator tube
and the bottom lid glued into the body. Two aluminium clamping plates
were then cut out, the top plate with a hole for the Iridium modem and the
bottom plate with two holes for the Sonde and actuator tube.

Figure 6.4: The finished buoy. On the left is the Sonde and the tube/pis-
ton used to change buoyancy. Inside is the test battery and the control
electronics.

Tom Blanchard 43

6.8 Remaining Issues or Known Bugs

There are a few remaining issues that the author acknowledges exist but are
mainly limitations he doesn’t have the time or expertise to work around or
fix. The first is the inability to detect obstacles above the buoy, which was
a requirement. Most of the code and hardware is in place to use sonar to
do this but as previously mentioned it was decided that sonar was not the
best way of doing this. Ideally something low power, with no moving parts,
that isn’t effected by dirt accumulation or algae growth would be used but
there wasn’t time to reinvestigate the issue.

The second known remaining issue is that of debug output, it was decided
early on during the project that the only debug output would be via a
serial port on the PIC. Although it would have been possible to log this
information to a debug file on the SD Card it was felt that this could have
adverse effects on the control system and could be a potential source of bugs
or other problems. The use of a hardware serial port using a library written
by Microchip is less likely to contain bugs or stop working than using code
to write to an SD Card. The downside of this decision is that debug output
cannot be viewed while the buoy is operating in the field. Construction of a
serial port logger device that would fit into the buoy was considered but the
author felt that there wasn’t enough time to finish and test such a device.

Tom Blanchard 44

7 Testing

In this chapter several kinds of test are presented; hardware tests, in-lab
system tests and field tests. The first are designed to test the functionality of
individual pieces of hardware and were used as validation that the hardware
was functioning correctly. The system tests are tests of the whole system
working in the laboratory, which provided the opportunity to test the control
system in a setting where debug output could be viewed and changes could
easily be made. It also afforded the opportunity to test the system’s error
handling ability, by disconnecting various pieces of hardware in-turn and
examining the control system’s response. After these tests were performed
field testing was carried out, for which the whole system was tested in a
lake. These tests were run unattended, with no debug output or possible
intervention other than recovering the whole system. During all of the tests
described above, the depth value was simulated. For hardware and lab tests
this was due to not being able to get a varying depth value any other way.
It would have been possible to use the real depth value during the field
tests but given that the water was only 5-12m deep the simulated depth was
used so that it could be eliminated as the source of any potential failures.
Acceptance tests were planned but the members of the glaciology group who
are interested in the project were on a research trip in Greenland.

7.1 Hardware Tests

Hardware tests were performed in the lab, running just the code necessary
for the test. Where possible simulated data was not used so that the tests
were more representative of the final system. Every test had to be passed
for the system to function as intended and these tests were frequently used
during development to determine when a piece of hardware was functioning
correctly. A simplified list of these tests is shown below.

1. Sonde - Wake up, send data and sleep.

2. SD Card - Set baud rate, initialise card, write file and read file.

3. RTC - Read time.

4. Satellite Modem - Write to buffer and transmit message.

5. Actuator - Move in, move out and stop.

Tom Blanchard 45

Figure 7.1: The location of the two field testing locations, Nant-y-Moch(A)
and Ystumtuen(B).

7.2 In-lab System Tests

Several sets of tests were performed by running the whole system in the
lab to verify that the control system and hardware were working correctly.
This provided opportunities to find and fix bugs and once they had been
competed the final system tests could be carried out. During these tests
the system was powered from a power supply rather than a battery so that
there would be no need to repeatedly recharge batteries. The Iridium modem
would occasionally be able to transmit but usually could not get an adequate
signal.

7.3 Field Tests

7.3.1 Location and Test Procedure

The field testing was carried out in two locations; Nant-y-Moch Reservoir
and a lake near Ystumtuen. The water the buoy was tested in, was between
5-12 meters deep in Nant-y-Moch and clear enough to see the buoy while it
was underwater. In Ystumtuen the water was quite shallow, only 3-4 meters
deep. The reason that field tests were not conducted in the sea was due to
the complications such locations would add to the testing procedure.

To make the buoy neutrally buoyant extra weight needed to be added.
To simplify testing, a the majority of the extra weight needed to make the
buoy neutrally buoyant was tied onto the bottom of the buoy. Any additional
weight was in the form of stainless bolts that were added one by one until
the correct buoyancy had been achieved.

The procedure for testing was as follows:

Tom Blanchard 46

1. Clear the SD Card of all Files and insert into SD Card module.

2. Connect the battery positive and ground to the system, connect the
two actuator wires, the Sonde and the Iridium modem’s antenna.

3. Apply acrylic sealing agent around the rim of the lid and power the
system on.

4. As the system turns on, hold switch 3 to reset the EEPROM variables.

5. Put the electronics into the body and face the Iridium antenna up-
wards. Let the system do at least one full cycle.

6. Place the lid on and tighten the clamping bars on both sides to com-
press the lid.

7. Place the buoy in the water while in its transmit state and add weight
until it is only slightly buoyant and still on the surface.

8. Let the buoy rise and fall for as long as possible, occasionally checking
for leaks.

9. Remove buoy from the water, undo the lid and turn off the electronics.

10. Copy the files on the SD Card to a laptop.

Tom Blanchard 47

7.3.2 Results

The first field test was carried out near the dam in the Nant-y-Moch reservoir
(Appendix E.1 point A). The water was just deep enough to allow the buoy
to submerge to a depth of around 20cm. The tests on the shore revealed a
bug with the actuator that resulted in it not moving every time it should.
The actuator would extend without fail but would not always retract. At
the time it was suspected that to be a wiring issue and so the buoy was left in
the water for 10 minutes to test the water-proofing, the weight distribution
and other aspects of the control system. While looking at the data after
the test it was noticed that the date/time returned by the RTC clock was
“RTC:01/1/00-00:00:00” which meant that it had become reset at some
point. This was believed to have been caused by accidentally connecting
the battery the wrong way around, something that had happened before.
By looking at a message file from one of the lab tests, an offset of +1hrs
58min 16secs was calculated to correct the Sonde’s time to UTC (Timezone
used by Iridium).

Figure 7.2: Depth of the buoy during it’s sampling state as measured by the
Sonde. The first 3 sets of points are relatively flat which indicates that the
buoy was not yet sealed and in the water. For the next two sets the buoy
was in water and the last set was during the recovery of the buoy. The times
that satellite messages were sent are also marked.

All but the last two messages were sent successfully and the queueing
behaviour can be seen when messages 3-6 are sent due to lack of reception
during the previous attempt. The reason that the last two messages were
not transmitted is that this was while the buoy was being disassembled on

Tom Blanchard 48

the shore and the antenna was facing the ground. Despite the actuator not
working the rest of the system can be seen to be working (Figure 7.2)with
readings being taken and messages being sent.

The second test was performed further along the reservoir(Appendix E.1)
where the water was 5-12 meters deep. The RTC clock displayed the same
problems as it did during the previous test, due to the lack of equipment to
reset it. The actuator initially displayed the same problems as before but
started functioning as expected once the buoy was in the water. The buoy
was left in the water for approximately 25 minutes, during which it ascended
and descended four times before it was removed and turned off. During this
time everything seemed to work, the only problem was that the buoy was
slightly too heavy which meant that when “surfaced” the top of the buoy
was just underwater by approximately 2cm.

Figure 7.3: Depth of the buoy during it’s sampling state as measured by
the Sonde. The first three sets of points are recorded during assembly on
the shore, the rest while the buoy was in the water. The times that satellite
messages were sent are also marked.

It can be seen in Figure 7.3 that the buoy almost failed every time when
trying to send messages while it was in the water, this was most likely due to
the signal attenuation caused by being just below the surface when trying to
transmit. Another possibility is that there weren’t many satellites overhead
at the time, something that can occur with a non-geostationary constellation
of satellites.

The graphs in Figures 7.2 and 7.3 show the depth of the buoy plotted
against time and appear to show a seemingly perfect change in depth. In fact

Tom Blanchard 49

it is too perfect and it wasn’t plausible that the buoy had behaved as shown
in the graphs, after some careful consideration it was determined that the
depth sensor may be on a section of the sonde that was inside the buoy. After
examining the Sonde this was found to be true. Every time the actuator
moved in or out the pressure inside the buoy would increase/decrease which
was read as a change in depth by the Sonde. For the next test the Sonde
was moved so that the depth sensor was outside of the buoy. See Appendix
C.1 for more details.

Before the third test in Ystumtuen lake (Appendix E.2), the RTC clock
was reset and started again and the actuator wiring checked. During the
initial on shore test the actuator displayed the same problems as in the first
two tests, this time further investigation revealed a bug linked to sending
messages. The section of code responsible for transmitting messages con-
tains an ‘if statement’ to check if there are more messages to send, the else
statement lacked the function call to move the actuator. The poor signal
quality in the lab meant that very few messages were sent and therefore this
section of code was never run. Since there was no way of reprogramming
the buoy at the lake, the solution was to disconnect the Satellite Modem’s
antenna so that the modem would always fail to transmit but the actua-
tor would move. The results shown in Figure 7.4 show that the depth was
no longer being misread, however after 10 minutes of operation the buoy
started to take on water and the test had to be halted.

Figure 7.4: Depth of the buoy during it’s sampling state as measured by
the Sonde. For the first four and the last sets of points the buoy was on the
shore, for the fifth it was in the water. The times that satellite messages
were sent are also marked.

Tom Blanchard 50

The graph in Figure 7.4 shows that the buoy was approximately 0.5m
underwater which is consistent with observations during testing. Also visible
is the intake of water which can be seen as a small increase in depth at the
start of the ascent. Enough water was taken in that the buoy wasn’t able
to surface. The author believes the water leaked in from the seal around
the Sonde which relied on compressing a rubber o-ring, if another student
hadn’t needed the Sonde it would have been possible to use acrylic sealant
to form a better seal.

Graphs of NMEA data, examples of data files, message files, received
message files and debug output are contained in the appendices.

7.3.3 Acceptance Tests

Although no formal acceptance tests were performed, the project supervisor
knew enough about the intended use of the buoy that he could act as an
end-user during testing. Although this isn’t a substitute for real acceptance
tests it was felt that his overall satisfaction with the system was a good
indication that the Glaciologists would also be satisfied. However, it should
be clear from the results presented that this is not a finished system ready
for deployment. Before that could happen the buoy’s body would most likely
have to be custom made by an engineering company and more testing would
need to be carried out for longer periods.

The tables below show the requirements as set out in Chapter 3 and
whether the current system meets them.

Requirement Pass/Fail Comments

Sample water continuously at a rate
of 1Hz.

Pass When recording data is
stored at this rate.

Transmit a reading of every 10m of
ascent, store the rest of the data in-
ternally.

Pass Occasionally one line
of the transmitted data
may be corrupt.

Water samples should include the
following data: depth, temperature,
conductivity. Other measurements
such as dissolved oxygen and chloro-
phyll content would also be of use if
available.

Pass As well as the three
required measurements,
the sonde measures dis-
solved oxygen, chloro-
phyll, salinity and tur-
bidity .

The buoy should be completely au-
tonomous and should reliably re-
cover from faults.

Pass

The data should be transmitted in
as close to real time as possible.

Pass An attempt to send
data is made after every
ascent.

Tom Blanchard 51

All data should be timestamped
with accurate GMT time so that it
can be matched to any events that
occur.

Pass The accuracy of the
RTC clock is dependant
on initially setting it to
the right value.

The buoy should perform a profile
every 6 hours.

Pass Although not tested,
the length the buoy
sleeps can be varied to
meet this value.

The buoy should be able to detect
ice above it and stop its ascent, to
prevent damaging itself.

Fail Although most of the
code and hardware is in
place, the buoy cannot
currently meet this re-
quirement.

If the buoy cannot transmit the data
collected, it should be stored and at-
tempt to send it again as soon as
possible.

Pass

The buoy should be tethered. Fail Although considered
during design, the buoy
was never tested while
attached to a tether.

The buoy should be able to operate
at depth of up to 200m.

Fail The current hardware
would not be able to
survive such depths.

The buoy should be easy and quick
to deploy and retrieve.

Pass The ease of deploy-
ment is subjective, but
very few steps are in-
volved and little techni-
cal knowledge required.

The buoy should be of a comparable
price to any similar products.

Pass In its present form the
buoy is substantially
cheaper, a profession-
ally engineered version
would be roughly equal
to current systems (Ap-
pendix F.1).

The buoy should have enough bat-
tery power to function for 1 year.

Pass

The buoy should be re-deployable
after recharging the battery and re-
trieving data.

Pass As long as the buoy is
undamaged.

Tom Blanchard 52

8 Evaluation

8.1 Evaluation of the Final System

The final system, in my opinion, successfully meets most of the requirements
set out in Chapter 3. Tables shown in section 7.3.3 show that the system
meets 12/15 of the requirements which is 80%. The buoy is able to ascend
and descend, take water quality measurements, send satellite messages and
recover from faults all to the specifications provided. Despite the high per-
centage of requirements met, there are several requirements that were not
met, that were considered to be important. The buoy’s ability to detect
objects above itself was an integral part of the project and was one of the
main features that would have set it apart from other existing products.
It is also a crucial feature if it were to be deployed in its intended environ-
ment. The choice to use sonar was one made early on in the project and was
agreed on by myself, my supervisor and the Glaciologists interested in the
system. It was only until much later on in the project that it was decided
that this technology was not really suitable. For this reason there was no
time to come up with an alternative. The system is still designed to work
with some kind of obstacle detection device, the control system currently
uses a switch to simulate a detected obstacle, but there is no hardware in
place to sense real obstacles.

The two remaining failed requirements; that the buoy should be tethered
and that it should be able to survive 200m depths, which are not consid-
ered to be major failures. This is because both of these requirements were
considered during the design phase and the reason the final system does
not meet them is mainly due to a lack of suitable engineering facilities and
equipment. To survive such depths the buoy’s casing and actuator would
need to be remade by engineers with experience in depth proofing, the au-
thor simply does not have the necessary skills or resources. In the case of
the tether, the buoy was designed to work with a tether but due to limited
testing time one was not used.

There are several other issues that are not in the requirements but still
merit discussion. The choice of a PIC microcontroller seemed to be correct
at the start of the project; however, by the end of the project its limitations
had become apparent. Nearly all of the i/o pins were in use, to communicate
with all of the hardware three software serial ports were needed and failings
of programming language used had become apparent. It is the author’s

Tom Blanchard 53

opinion that going with a “bigger” PIC or a different type of microcontroller
would not be the right choice, the PIC used does work and using almost all
of its features would be considered a good thing by many software engineers.
The use of multiple software serial ports is not ideal as the maximum baud
rate they are capable of is 4800bps, which is much slower than most of the
other hardware was capable of but sufficient for the purposes of this project.
The longer the author used the C18 compiler and the version of C used
to program the PIC, the more poorly documented/undocumented bugs or
“features” were found. The fact that Microchip’s implementation of the
printf function couldn’t print floats or longs took the author days to figure
out.

The chosen method of buoyancy control is something that the author
is quite proud of; instead of using an off the shelf linear actuator a “home-
made” actuator was built. This meant that the actuator used 200mA rather
than the 15A of current the alternative actuator used, which is 75 times less.
This is a phenomenal reduction, the effect of which is even more dramatic
as in my estimated power usage (Table 5.1) the actuator consumed more
power than anything else by a large margin. This would allow much fewer
batteries to be used if the buoy were to be deployed.

Something that was noticed when looking through the results of the tests
was that the buoy didn’t send messages at every opportunity. As mentioned
in the testing section this may have been due to a poor signal, but it is felt
that it would have been a good idea to mount the antenna higher up and
retry sending a message a few times before giving up. This may have resulted
in more messages being transmitted. Something else that was considered to
improve the amount of data sent and reduce costs was data compression.
Currently a maximum of three NMEA strings and three RTC times can
fit into a message. By compressing this data and using the full 340 bytes
available, between 5 and 8 NMEA strings and RTC times could fit into one
message. The PIC’s limited processing power and RAM limits the types of
compression algorithms to relatively simple ones but it is something that is
definitely possible.

Most of the issues described above could be resolved if the author had
had a little more time to work on the system. If the project were to be
started again, the author would not change many things. The requirement
to sense obstacles above would be considered in more detail and more time
would be set aside for testing. As it stands the system should be considered
a “final prototype” and after some more testing and bug fixing it could be
deployed for real in Greenland.

8.2 Personal Evaluation

For me, the project has been very enjoyable, challenging and incredibly
interesting. I have learnt a huge amount from it, about many different
aspects of hardware and software. I have not struggled with keeping myself

Tom Blanchard 54

motivated, despite some infuriating and complicated problems, at any point
during the year.

For the duration of the project the I have made steady progress. Initially
due to the number of other modules the I was taking, the amount of time
available to work on the project was relatively small. During the second
semester, however, I had a lot more free time and so dedicated the majority
of it to the project. This approach paid off and I made significant progress
during my second semester, the only stumbling block was the delay in getting
the motor required for the actuator. This took a month longer than expected
and while I strived to fill this intervening time with work on other aspects
of the project I quickly found myself with nothing to do but wait for the
motor to arrive. I feel that this highlights some of my weaknesses, which
are not planning well ahead and sometimes not being quite as proactive as I
could be. Had I considered the need for such a motor at the start of the year
I would not have been delayed for so long. I also could have been a more
proactive in finding out what the delay was and trying to resolve it. I really
would have liked to have had more time to test the system, although I do not
think I could have worked any harder. I feel that my expectation of having
a fully working and deployable system may have been a bit ambitious.

In summary I feel I have learnt a great deal over the course of the project
and have greatly developed my hardware and software, design and imple-
mentation skills. I also think that I have achieved a lot, in terms technical
achievement, in the project. I started the project thinking that connecting
all of the hardware together and getting it working, would simply be a case
of putting wires in the right place and reading the manual. I have learnt,
however, that this can actually be the hardest part of the development pro-
cess and that there is always an unpredicted problem. I am very proud
that I single-handedly managed to write the software, design and build the
electronics and most of the mechanical structure of the system. I think my
ability to self motivate is what enabled me to progress as far as I did and
resulted in meeting most of the system requirements.

Tom Blanchard 55

Bibliography

[1] “Drifting buoys.” [Online]. Available: http://www.pacificgyre.com

The website of a company that makes drifting data buoys,
provided good information on why such buoys are used and
what technologies they use.

[2] “Extreme Programming For One,” Internet,
http://xp.c2.com/ExtremeProgrammingForOne.html.

An attempt to make eXtreme Programming work for 1-2 per-
son projects. Although interesting it is not particularly con-
vincing.

[3] “History of sonar.” [Online]. Available:
http://inventors.about.com/od/sstartinventions/a/sonar history.htm

A very brief overview of the history of sonar, leaves out the
role of Fessenden and the Fessenden oscillator.

[4] “Iridium constellation.” [Online]. Available:
http://www.iridium.com/About/IridiumGlobalNetwork/SatelliteConstellation.aspx

An article detailing how the Iridium constellation works and
various technical details of the satellites.

[5] “Slocum glider: Design and 1991 field trials,” 1991. [Online]. Available:
http://www.webbresearch.com/pdf/SlocumGlider.pdf

The outcomes of testing and initial designs mentioned were
criticial in understanding how and why the glider was devel-
oped and how it worked.

[6] “MPLAB C18 C Compiler Libraries,” 2005.

The C18 library reference manual. It contains descriptions of
functions and some small sections of example code.

[7] Seaweb Acoustic Communication and Navigation Networks, 2005.

Tom Blanchard 56

A fascinating article on the construction and design of a net-
work of underwater equipment, including gliders, AUVs data
buoys and relay buoys. Communication between different el-
ements is by acoustic modem and data is relayed out of the
network using Iridium satellite modems on dedicated gateway
nodes. The article provides an insight into technologies and
strategies used and was very useful in making certain design
descisions.

[8] IEEE Journal of Oceanic Engineering, 2006-2010.

This journal contained countless interesting papers on emerg-
ing technologies and current research work in the field of
oceanic engineering. Nothing was directly taken from the
journal but it provided a lot of food for thought and gave
a good overview of the research area.

[9] “PIC18F2455/2550/4455/4550 Data Sheet,” 2009.

A very useful document detailing every aspect of the 18F4550
PIC. Contains very detailed information on how to use each
feature.

[10] “Argo homepage,” Internet, November 2010,
http://www.argo.ucsd.edu/.

The homepage for the Argo project. The whole site is very
interesting and contains a lot of information on the Argo
project.

[11] Archimedes, Works of Archimedes. Cambridge University Press, 1897.

Material on the fundamentals of buoyancy is quite hard to
come by but this book provides a good overview of the sub-
ject. Some elements are mathematically heavy and can be
tricky to understand, however diagrams are used throughout
and help a lot.

[12] P. Beynon-Davies, C. Carne, H. Mackay, and D. Tudhope, “Rapid ap-
plication development (RAD): an empirical review,” European Journal
of Information Systems, vol. 8, pp. 211–223, 1999.

The paper gives an overview of the RAD development ap-
proach and details several case studies of its use. Very useful
in helping determine the effectiveness of RAD.

[13] A. Clements, Microprocessor Systems Design, 3rd ed. PWS-Kent Pub-
lishing Company, 1997.

Tom Blanchard 57

Provides a fascinating insight into what actually is inside a
microcontroller and the benefits and disadvantages of using
a micontroller. It also was helpful when deciding if program-
ming in C would be the right option, the added complexity
of implementing high level features in assembly described in
the book made me see how much extra work it would be.

[14] R. D. Y. D. Dean Roemmich, Stephen Riser, “Autonomous profiling
floats: Workhorse for broad-scale ocean observations,” Marine Tech-
nology Society Journal, vol. 38, pp. 31–39, 2004.

A paper published about midway through the deployment
phase of the Argo Float network, provides a good background
to why the project was conceived and how the deployment
is going. Also describes and explains the technologies used in
the floats.

[15] M. Fowler, Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 2005.

The first few chapters provide a good explanation as to what
refactoring is and why it should be done. It also explains, in
later chapters, methods of refactoring. While reading it, it
became apparant that tradeoffs between refactoring and fol-
lowing an embedded coding stadards would have to be made.

[16] R. D. e. a. Gould, J., “Argo profiling floats bring new era of in situ
ocean observations,” Eos, vol. 85, pp. 179,190–191, 2004.

An overview of the Argo project including deployment strat-
egy, progress and brief results analysis.

[17] J. Guold, “From swallow floats to argoo - the development of neutrally
buoyant floats,” Deep-Sea Research, vol. 2, pp. 529–543, 2005.

The history of neutrally buoyant floats. A fascinating insite
into the history of such devices and how they developed into
the Argo floats that are now so prevalent.

[18] O. T. N. T. Hosoda, S., “A monthly mean dataset of global oceanic
temperature and salinity derived from argo float observations,” JAM-
STEC, vol. 8, pp. 47–59, 2008.

A study of temperature and salinity data obtained from the
Argo float network.

[19] A. Hubbard, J. E. Box, R. Bates, F. Nick, A. J. Luckman, R. van de
Wal, and S. H. Doyle, “The kinematic response of petermann glacier,
greenland to ice shelf perturbation,” in American Geophysical Union,
2010.

Tom Blanchard 58

A paper detailing the possible causes for the detatchment of
a 275 square km area of the Petermann Glacier shelf.

[20] B. O. Klatt, O. and E. Fahrbach, “A profiling floats sense of ice,”
American Meteorological Society, vol. 24, pp. 1301–1308, 2007.

The development of an algorithm to enable Argo floats to
detect ice above using water column temperature measure-
ments.

[21] T. J. P. A. Krishfield, R. and M.-L. Timmermans, “Automated ice-
tethered profilers for seawater observations under pack ice in all sea-
sons,” American Meteorological Society, vol. 25, pp. 2091–2105, 2008.

A paper detailing the construction and testing of a modified
Argo float which is tethered to moving sea-ice.

[22] P. Prinz and T. Crawford, C in a Nutshell. O’Reilly Media, 2005.

A very useful reference book on the C programming language.
Some chapters are worth reading just to refresh the memory
on certain topics, the rest is mostly useful to just dip into
when a particular problem arises.

[23] D. Semiconductor, “Ds1307 serial real-time clock data sheet,” Internet.

The data sheet for the RTC module used in the project. This
was very helpful in initially setting up the device.

[24] I. Sommerville, Software Engineering 9. Pearson Education, 2010.

Good reference book for software engineering practices and
process models.

[25] D. Systems, “udrive-usd-g1 data sheet,” Internet, April 2009.

The data sheet for the SD Card Module, useful but contains
mistakes.

[26] F. F. Tsui and O. Karam, Essentials of Software Engineering. Jones
& Bartlett Publishers, 2006.

[27] J. S. Turner, Buoyancy Effects in Fluids. Cambridge University Press,
1980.

An incredibly complex book on buoyancy effects, 99 percent
of which I couldn’t understand, but there was the occasional
page that was very useful in understanding buoyancy.

Tom Blanchard 59

Appendices

Tom Blanchard 60

A Hardware On/Off State Guide

Hardware Transmit Dive Sleep Sample

SD Card On Off Off On

Sonde Off On Off On

Sat Modem On Off Off Off

PIC On On Sleep On

Sonar Off Off Off On

Actuator Off On Off On

Table A.1: The power state for every hardware module in each control
system state.

Tom Blanchard 61

B Battery Technologies

Technology Energy Density(MJ/Kg) Power(W/Kg) Efficiency Discharge Life

Lead-acid 0.11-0.14 180 70-90% 3-4% 20

Alkaline 0.31 50 99.9% <0.3% <5%

NiMH 0.11-0.29 250-1000 66% 30% ?

Li-ion 0.46-0.72 1800 80-90% 5-10% 2-3

Li-Pol 0.47-0.72 3000+ ? ? 2-3

Ni-Cad 0.14-0.22 150 70-90% 10% ?

Table B.1: Various attributes for different types of battery technology

Tom Blanchard 62

C Plotted Sonde Data

C.1 Pre/Post Sonde Depth Problem

Figure C.1: The depth value as measured by the Sonde while in the lab, the
effect of moving the Sonde can be seen in the second graph where the depth
value remains relatively constant while the actuator moves.

Tom Blanchard 63

C.2 Coductivity Data

Figure C.2: A sample of conductivity data taken while sampling. The first
set of data was taken while the buoy was out of the water, the second while
in the water.

C.3 Chlorophyll and Oxygen Data

Figure C.3: A sample of Chlorophyll and Oxygen concentrations as recorded
by the buoy. The first set of data was taken while the buoy was out of the
water, the second while in the water.

Tom Blanchard 64

C.4 Temperature Data

Figure C.4: Example of temperature variation during sampling. The first
set of data was taken while the buoy was out of the water, the second while
in the water.

Tom Blanchard 65

D Buoyancy Control Graphs

D.1 Actuator Force Graph

Figure D.1: The maximum depth that actuators with different push
strengths(in Newtons) can move a 5cm diameter piston.

Tom Blanchard 66

D.2 Air Tank Duration Graph

Figure D.2: The amount of air left in a tank that initially has 2400 litres (8
litres at 300bar) of air, after each ascent. For each ascent 125ml of positive
buoyancy is being created.

Tom Blanchard 67

E Maps

E.1 Nant-y-Moch

Figure E.1: Map of the Nant-y-Moch reservoir used for the first two field
tests. Location A was the site of the first test and, B the site of the second
test.

Tom Blanchard 68

E.2 Ystumtuen

Figure E.2: Map of the Ystumtuen lake used for the third field test, the
location of the test is marked ‘C’.

Tom Blanchard 69

F Equipment Cost

Hardware Component Cost (£)

PIC FS-USB Board 40

Iridium Modem 450

Micro SD Card module 18

2Gb Micro SD Card 5

Real-Time Clock module 9

Misc. Electronics 10

Misc. Materials 150

Total 682

Table F.1: The cost of all of the hardware components and materials used.

The Sonde (already owned, so not shown in table) is by far the most
expensive piece of equipment required for the project. The estimated cost is
between 6-11,000, this brings to total cost in-line with the cost of an Argo
float.

The yearly Iridium data costs for the project would be quite substantial.
Profiling 200m of water four times a day would, using the current system,
require 27 messages per day. Each message contains approximately 240
bytes, each byte costs 0.1 cent, so one day would total $6.48 and a year
$2365.2 (£1418.5).

Tom Blanchard 70

G Example Data

G.1 DATAFILE.TXT

#####################################
Example contents of a DATAFILE.txt file.
#####################################
RTC:19/4/11-10:24:21
19/04/11, 07:27:27, 17.19, 0.001, 0, 0, 0, -0.349, -2.6, 0.3, 89.6, 8.62, 12.2
19/04/11, 07:27:29, 17.17, 0.001, 0, 0, 0, -0.349, -2.6, 0.1, 89.8, 8.65, 12.2
19/04/11, 07:27:30, 17.16, 0.001, 0, 0, 0, -0.35, -2.6, 0.1, 89.8, 8.65, 12.2
19/04/11, 07:27:31, 17.15, 0.001, 0, 0, 0, -0.35, -2.6, 0.2, 89.8, 8.65, 12.3
19/04/11, 07:27:32, 17.15, 0.001, 0, 0, 0, -0.35, -2.6, 0.3, 89.7, 8.64, 12.3
19/04/11, 07:27:33, 17.14, 0.001, 0, 0, 0, -0.35, -2.6, 0.5, 89.6, 8.64, 12.2
19/04/11, 07:27:34, 17.13, 0.001, 0, 0, 0, -0.35, -2.6, 0.4, 89.6, 8.63, 12.2
19/04/11, 07:27:35, 17.12, 0.001, 0, 0, 0, -0.35, -2.6, 0.6, 89.5, 8.63, 12.3
19/04/11, 07:27:36, 17.11, 0.001, 0, 0, 0, -0.35, -2.6, 0.5, 89.6, 8.64, 12.3
19/04/11, 07:27:37, 17.11, 0.001, 0, 0, 0, -0.35, -2.6, 0.4, 89.6, 8.64, 12.2
19/04/11, 07:27:38, 17.1, 0.001, 0, 0, 0, -0.35, -2.6, 0.3, 89.7, 8.65, 12.2
19/04/11, 07:27:39, 17.1, 0.001, 0, 0, 0, -0.35, -2.6, 0.3, 89.6, 8.65, 12.3
19/04/11, 07:27:40, 17.1, 0.001, 0, 0, 0, -0.35, -2.6, 0.2, 89.5, 8.64, 12.2

G.2 M0.TXT

#####################################
Example contents of a message file.
#####################################
19/04/11,07:27:27,17.19,0.001,0,0.000,0.00,-0.349,-2.6,0.3,89.6,8.62,12.2,
#RTC:19/4/11-10:25:43#
19/04/11,07:27:47,17.08,0.001,0,0.000,0.00,-0.350,-2.5,0.4,89.7,8.65,12.2,
#RTC:19/4/11-10:26:03#
19/04/11,07:28:07,16.97,0.001,0,0.000,0.00,-0.350,-2.4,0.2,89.7,8.67,12.3,
#RTC:19/4/11-10:26:23#

Tom Blanchard 71

G.3 Debug Output

#####################################
The following is the debug output for one complete cycle of the control sys-
tem.
#####################################
Initialised UARTS
Powering on SD Card Module.
Sending SD Card Module Auto baud
Received: 6
Received ACK
SD Card module baud set
Sending SD Card Initialise Command
Received: 6
SD Card Detected and Initialised
Requesting NMEA strings (May take up to a minute)
Request Sent
RTC Initialised,RTC:19/4/11-10:16:23
Press Switch 3 to reset EEPROM variables
EEPROM Variables Reset.
Read EEPROM Message Number: 1, Sent Messages:1
Writing RTC to datafile
Iridium Off.
Recovery state: 3
Recovered from sleep failure.
Stored for Sat, Depth:40.0
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Stored for Sat, Depth:30.500

Tom Blanchard 72

Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Stored for Sat, Depth:20.500
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Stored for Sat, Depth:10.500
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.

Tom Blanchard 73

Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Writing data to SD.
Stored for Sat, Depth:0.500
Writing data to SD.
Sending sleep command to sonde
Surfaced.
Iridium On.
messages sent:1, message numbers:2
Reading File:m1.txt
Sending AT+CIER=0
0
Sending AT+SBDWT
R
241
Sending AT*R1
0
Sending AT+SBDI
1
Message Sent
messages sent:2, message numbers:2
Reading File:m2.txt
Sending AT+CIER=0
0
Sending AT+SBDWT
R
194
Sending AT*R1
0
Sending AT+SBDI
1
Message Sent
messages sent:3, message numbers:2

Tom Blanchard 74

Diving.
Depth:0.0
Diving.
Depth:1.0
Diving.
Depth:2.0
Diving.
Depth:3.0
Depth continues to increase but has
been removed to save space.
Diving.
Depth:38.0
Diving.
Depth:39.0
Diving.
Depth:40.0
Reached Resting Depth
Preparing to sleep.
Powering off SD Card Module.
Going to sleep.
I am awake!

Tom Blanchard 75

